

The International Conference of the University of Agronomic Sciences and Veterinary Medicine of Bucharest AGRICULTURE FOR LIFE, LIFE FOR AGRICULTURE June 8 – 10, 2023, Bucharest, Romania

Wokshop: Current trends regarding food safety and food security in Romania

BOTTLED WATER CONSUMER RISK EXPOSURE IN ROMANIA

Dr. Eng. UNGUREANU Elena- Loredana Food Packaging Laboratory National R&D Institute for Food Bioresources – IBA Bucharest

BUCHAREST 2023

INTRODUCTION

Materials used in the food industry include glass, plastics, metals, paper and cardboard, multilayer materials, but the most used are **plastics packaging** obtained from polyolefins (PE, PP), polyesters (PET), polyvinyl chloride and polyvinylidene chloride, polystyrene, polyamide.

Beside the monomers, such as ethylene, propylene, esters, amides, plastic materials contain, also, various **chemical additives**, like plasticizers, antioxidants, flame retardants, dyes and pigments and many others.

These chemical additives, which are **metals-based**, can be released into the food products in certain conditions, process known as "**migration**".

Bisphenol A (BPA), phtalates, acetaldehyde and **potentially toxic elements** are the most studied chemical additives presents in food packaging and food products.

The **aim** of this study was evaluation of contamination degree of bottled water from Romanian market with BPA and pottentially toxic elements and assessment of carcinogenic and non-carcinogenic risk of target contaminants through ingestion pathway for 2 age categories.

Sample collection

69 **botted drinking water** samples collected between 2019-2021 were tested

50 samples of **regular bottled water** coded P1 – P50 → 36 brands were Romanian samples and 14 samples were imported 19 samples of baby bottled water coded P1' –
 P19' → 4 brands were Romanian samples and 15 samples were imported

THE CONTENT OF POTENTIALLY TOXIC ELEMENTS IN REGULAR AND BABY BOTTLED WATER

Element	Concentration range ± SD (μg/L) in regular bottled water	Concentration range ± SD (µg/L) in baby bottled water	Directive (EU) 2020/2184 (µg/L)	Law no. 311/2004 (µg/L)	Directive 98/83/EC (µg/L)	WHO 2017 (μg/L)
Ba	< LOD – 10.47 ± 0.71	< LOD - 16.76 ± 0,32	-	-	-	1300
Со	$< LOD - 0.89 \pm 0.007$	$< LOD - 0.25 \pm 0.05$	-	-	-	-
Cu	$0.38 \pm 0.009 - 5.63 \pm$	$0.38 \pm 0.002 - 1.75 \pm 0.03$	2000	100	2000	200
	0.540					
Zn	$0.67 \pm 0.04 - 15.20 \pm 0.80$	$0.96 \pm 0.07 - 4.47 \pm 0.22$	-	5000	-	-
Mn	< LOD – 7.41 ± 0.12	$< LOD - 4.17 \pm 0.20$	50	50	50	-
Ni	$0.16 \pm 0.002 - 3.77 \pm 0.07$	$0.31 \pm 0.006 - 2.25 \pm 0.06$	20	20	20	70
Li	< LOD – 12.30 ± 0.76	< LOD - 7.28 ± 0.36	-	-	-	-
Fe	$18.80 \pm 1.37 - 1450.63 \pm$	62.38 ± 6.13 - 1688.58	200	200	200	-
	35.64	± 39.24				
Pb	$< LOD - 6.00 \pm 0.02$	$0.11 \pm 0.006 - 1.79 \pm 0.02$	5	10	10	10
Cd	< LOD	< LOD	5	5	5	3
Cr	$< LOD - 4.02 \pm 0.09$	< LOD - 0.16 ± 0.007	25	50	50	50
Sb	$< LOD - 0.64 \pm 0.04$	< LOD - 0.13 ± 0.001	10	5	5	20

- acc. to Law no. 311/2004 and Directive 98/83 --> iron exceed the limit imposed

iron is most prevalent in surface waters, in groundwater and springs, due to their **high concentrations** in the lithosphere

30 % of tested samples were **below** the imposed limit of 200 μ g/L

Fe EXCEEDINGS IN BABY BOTTLED WATER

21% of tested samples were **below** the imposed limit of 200 μ g/L

ANALYSIS OF BPA CONTENT IN BOTTLED WATER BPA LEVELS IN REGULAR AND BABY BOTTLED WATER

BPA levels in baby bottled water

Person correlations didn't show
 any correlation between
 potentially toxic elements and BPA levels

all the concentrations obtained are **below the maximum imposed limit of 50 µg/Kg** (Regulation EU 213/2018)

BPA levels in regular bottled water

HEALTH RISK ASSESSMENT OF POTENTIALLY TOXIC ELEMENTS AND BPA, FOR ADULTS AND CHILDREN NON - CARCINOGENIC ANALYSIS

- ➢ the estimation acc. to the model presented in PHA Guidance manual, 2005
 - for an adult (70 years, 70 kg wight and a water intake rate of 2 L/day)
 - for a child (2 years, 10 kg weight and a water ingestion rate of 1 L/day)

Parameters equations

- Exposure dose: D = (C X IR X EF) / BW, where D is exposure dose (mg/kg/day), C is contaminant concentration (mg/L), IR is intake rate of water (L/day), EF is exposure factor (unitless), BW is body weight (kg).
- Hazard Quotient (HQ): HQ = D / RfD, where D is exposure dose (mg/kg/day), RfD is reference dose (mg/kg/day), which represents the tolerable daily intake of the metal via oral exposure.

Hazard Index (HI):

 $HI = HQ_{Pb} + HQ_{Cd} + HQ_{Cr} + HQ_{Cu} + HQ_{Zn} + HQ_{Mn} + HQ_{Ni} + HQ_{Ba} + HQ_{Co} + HQ_{Li} + HQ_{Fe} + HQ_{Sb} + HQ_{BPA}$

NON - CARCINOGENIC ANALYSIS OF REGULAR BOTTLED WATER FOR ADULTS

Element	D (µg/kg/day)		HQ			
	max	min	mean	max	min	mean
Ba	2.99E-04	0.00	5.45E-05	4,27E-03	0,00E+00	7,79E-04
Со	2.54E-05	0.00	3.19E-06	1,27E-03	0,00E+00	1,59E-04
Cu	5.54E-04	1.00E-05	4.13E-05	1,50E-01	2,70E-03	1,11E-02
Zn	4.34E-04	1.91E-05	9.04E-05	1.45E-03	6.38E-05	3.01E-04
Mn	2.12E-04	0.00	1.17E-05	4.60E-03	0.00	2.55E-04
Ni	1.08E-04	3.71E-06	3.46E-05	5.39E-03	1.86E-04	1.73E-03
Li	3.51E-04	0.00	4.77E-05	1.26E-02	0.00	1.70E-03
Fe	5.00E-02	0.00	1.30E-02	7.17E+00	0.00	1.86E+00
Pb	1.71E-04	0.00	1.85E-05	4.76E-02	0.00	5.13E-03
Cd	0.00	0.00	0.00	0.00	0.00	0.00
Cr	1.15E-04	0.00	8.01E-06	3.83E-02	0.00	2.67E-03
Sb	1.83E-05	0.00	2.34E-06	5.22E-02	0.00	6.68E-03
BPA	1.03E-04	1.95E-04	1.55E-04	2.07E-03	3.89E-03	3.10E-03
HI	7.18E+00	1.73E-02	1.89E+00			

except Fe, all elements tested had HQ values less than 1

the ascendent trend of Exposure Dose is:
 Cd < Sb < Co < Cr < Mn < Pb < Ni < Cu
 Li < Ba < Zn < BPA < Fe

the ascendent trend of Hazard Quotient is:

Cd < Co < Mn < Zn < Ba < Li < Ni < Cr < BPA < Pb < Sb < Cu < Fe

values of D and HQ - Cd

> \uparrow values of D and HQ - Fe

If the HQ value is less or equal to coefficient 1, repeated exposure may not cause side effects, but if the value is greater than 1, then consumers are exposed to a non-carcinogenic risk.

32% of tested samples had HQ values lower than 1 → repeated consumption doesn't cause adverse effects

32% of tested samples had HI values **lower than 1** → no side effects will occur

- if HI is higher than 1: some adverse effects, but non-carcinogenic, can appear
- if HI is less than or equal to 1: no side effects will occur after chronic exposure

NON - CARCINOGENIC ANALYSIS OF BABIES BOTTLED WATER

Element	D	D (μg/kg/day)			HQ	
	max	min	mean	max	min	mean
Ba	1.68E-03	0.00	3.87E-04	2.39E-02	0.00	5.52E-03
Со	2.50E-05	0.00	7.95E-06	1.25E-03	0.00	3.97E-04
Cu	1.75E-04	3.80E-05	9.60E-05	4.73E-02	4.25E-03	2.54E-02
Zn	4.47E-04	9.60E-05	2.04E-04	1.49E-03	3.20E-04	6.81E-04
Mn	4.17E-04	0.00	3.51E-05	9.07E-03	0.00	7.62E-04
Ni	2.25E-04	3.10E-05	1.06E-04	1.13E-02	1.55E-03	5.12E-03
Li	7.28E-04	0.00	1.72E-04	2.60E-02	0.00	6.13E-03
Fe	1.69E-01	6.20E-03	4.39E-02	2.41E+01	8.86E-01	7.50E+00
Pb	1.79E-04	1.10E-05	4.36E-05	4.97E-02	3.06E-03	1.19E-02
Cd	0.00	0.00	0.00	0.00	0.00	0.00
Cr	1.60E-05	0.00	1.32E-06	5.33E-03	0.00	4.39E-04
Sb	1.30E-05	0.00	1.60E-06	4.33E-03	0.00	5.44E-04
BPA	3.92E-04	6.38E-04	5.35E-04	7.83E-03	1.28E-02	1.07E-02
HI	3.50E+02	9.22E-01	2.53E+01			

the ascendent trend of Exposure Dose is:

Cd < Cr < Sb < Co < Mn < Pb < Cu < Ni < Li < Zn < Ba < BPA < Fe.

the ascendent trend of HQ is:
Cd < Co < Cr < Sb < Zn < Mn < Ni < Ba</p>
< Li < BPA < Pb < Cu < Fe.</p>

> _ values of D and HQ - Cd

> to values of D and HQ - Fe

except Fe, all elements tested had HQ values less than 1

EXCEEDINGS OF THE HAZARD QUOTIENT VALUES OF FE IN BABY DRINKING WATER

only sample P13' had the **HQ value lower than 1**

HAZARD INDEX VALUES OF BABY BOTTLED WATER

only sample P13' had the **HI value lower than 1**

CARCINOGENIC ANALYSIS

> involves estimation of the Cancer risk (CR) and Total Cancer Risk (TCR)

Parameters equations

- Cancer risk (CR): CR = D / CSF, where D is exposure dose in mg/kg/day and CSF is Cancer Slope Factor, in mg/kg/day
- Total Cancer Risk (TCR): TCR = CR_{Pb} + CR_{Cd} + CR_{Cr} + CR_{Ni}, where Cr_{Pb}, Cr_{Cd}, Cr_{Cr} and Cr_{Ni} represent values of CR of the 4 metals.

Interpretation

- \succ a value less than **1x10**⁻⁶ is insignificant
- a value above 1x10⁻⁴ is harmful
- \succ the acceptable level for TCR is **1x10**⁻⁵

CARCINOGENIC ANALYSIS OF REGULAR AND BABY BOTTLED WATER

Regular bottled water

Metal	Cancer risk				
	max	min	mean		
Pb	1.46E-03	0.00	1.57E-04		
Cd	0.00	0.00	0.00		
Cr	4.71E-03	0.00	3.28E-04		
Ni	9.05E-05	3.21E-06	2.90E-05		
CR _(Total)	4.86E-03	4.00E-05	5.14E-04		

- the ascending trend of CR is: Cd < Ni < Pb < Cr;</p>
- TCR: 28% of the samples are in the acceptable level, while 72% of the samples are harmful, which can lead to a type of cancer;

Baby bottled water					
Metal	Cancer risk				
	max	min	mean		
Pb	1.53E-03	9.35E-05	3.63E-04		
Cd	0.00	0.00	0.00		
Cr	6.56E-04	0.00	5.39E-05		
Ni	1.89E-04	2.60E-05	8.61E-05		
CR _(Total)	1.58E-03	1.69E-04	5.03E-04		

the ascending trend of CR is: Cd < Cr < Ni < Pb;</p>

TCR: all 19 samples were in the **tolerable range**;

values of CR and TCR – for Cd, in both, regular and baby bottled water

WATER QUALITY DETERMINATION

involves estimation of the contamination factor (Cf) and contamination degree (Cd)

Parameters equations

- Contamination factor (Cf): Cf = CA/CN, where CA is the measured concentration of the potentially toxic metal and CN is the maximum allowable concentrations (MAC) of the metals of interest.
- **Contamination degree (Cd):** $Cd = Cf_1 + Cf_2 + ... + Cf_n$, where Cd is degree of contamination, Cf_1 , Cf_2 , Cf_n are contamination factor of each contaminant.

Interpretation	Contamination factor classes	Description	Contamination degree classes	Description
	CF <1	low contamination	Cd < 6	low degree of contamination
	1 < CF < 3	moderate contamination	6 < Cd < 12	moderate degree of contamination
	3 < CF < 6	considerable contamination	12 < Cd < 24	considerable degree of contamination
	CF >6	very high contamination	Cd >24	high degree of contamination

REGULAR BOTTLED WATER QUALITY

Element	Contamination factor			
	max	min	mean	
Ba	-0.97	-1.00	-0.99	
Cu	-0.94	-1.00	-0.99	
Zn	-0.99	-1.00	-1.00	
Mn	-0.85	-1.00	-0.99	
Ni	-0.81	-0.99	-0.94	
Fe	7.81	-0.93	1.25	
Pb	-0.40	-1.00	-0.94	
Cd	-1.00	-1.00	-1.00	
Cr	-0.92	-1.00	-0.99	
Sb	-0.87	-1.00	-0.98	
Cd	-1.06	-9.88	-7.58	

- values of Cf and Cd cadmium
- values Cf and Cd iron
- except iron, all other metals Cf < 1 low contamination;</p>
- the ascending trend of Cf is: Cd < Zn < Cr < Ba < Mn < Cu <</p>
 Sb < Pb < Ni < Fe;</p>
- Cd < 6 ---- low degree of contamination;</p>
- the downward trend of Cd is: Fe > Ni > Pb > Sb > Ba > Cu
 Mn > Cr > Zn > Cd;

BABY BOTTLED WATER QUALITY

Element	Contamination factor			
	max	min	mean	
Ba	-0.94	-1.00	-0.99	
Cu	-0.98	-1.00	-0.99	
Zn	-1.00	-1.00	-1.00	
Mn	-0.92	-1.00	-0.95	
Ni	-0.89	-0.98	-0.95	
Fe	7.44	-0.68	1.47	
Pb	-0.82	-0.99	-0.96	
Cd	-1.00	-1.00	-1.00	
Cr	-1.00	-1.00	-1.00	
Sb	-0.97	-1.00	-0.99	
Cd	-1.38	-9.64	-7.40	

- values of Cf and Cd Cd, Cr and Zn
- values of Cf and Cd Fe
- except iron, all other metals Cf < 1 low contamination;
- the ascending trend of Cf, is: Cd < Cr < Zn < Sb < Mn < Cu < Ni < Pb < Co < Fe;</p>
- Cd < 6 ---- low degree of contamination;</p>
- the downward trend of Cd is: Fe > Mn > Ni > Pb > Ba > Cu > Sb > Zn > Cr > Cd;

GENERAL CONCLUSIONS

- In baby drinking water, only Fe exceed the imposed limit;
- Concentrations of BPA in regular and baby bottled water were **lower** than imposed limit;
- ➢ In case of regular drinking water, only Fe had HQ > 1 and 30% of samples has HI value > 1.
- ➢ For baby bottled water, except Fe, all other metals had HQ values < 1 and only one sample has HI < 1.</p>
- ➢ 30% of the samples had values of HI for potentially toxic elements + BPA < 1 and 70% > 1;
- For baby water, all the HI values for potentially toxic elements + BPA were > 1;
- Except Fe, all the metals from regular and baby bottled water had a contamination factor < 1, which means low contamination;</p>
- Contamination degree of regular and baby bottled water were < 6, which means a lower degree of contamination.</p>

RECOMMENDATIONS

For consumers

- > Maintain the bottled water in proper conditions protected from direct sunlight or high temperatures;
- Limits sparkling water consumption;
- > Avoid using plastic bottles or containers from polycarbonate because many of them contain BPA;
- Use plastic bottle certified as BPA free, or bottles obtained from polyethylene or polypropylene.

For producers and retailers

- Keep bottled water in optimal light and temperature conditions;
- Improve the pre-bottled water treatments (especially for baby water);
- Use of less hazardous packaging materials.

RECOMMENDATIONS

For the authorities

- 1. The levels of potentially toxic elements, BPA, and other chemical contaminants, from food and water, must be assessed regularly;
- 2. Measures must be taken to minimize environmental contamination, the main factor for food contamination;
- 3. It must organize consumer education campaigns related to storing of food, but also about the effects of chemical contaminants on human health;
- 4. The allocation of funds and grants for this type of research study, but which should include a much larger number of contaminants, carried out on other food products.

Thank you for your attention!

